MetaPhOrs: orthology and paralogy predictions from multiple phylogenetic evidence using a consistency-based confidence score
نویسندگان
چکیده
Reliable prediction of orthology is central to comparative genomics. Approaches based on phylogenetic analyses closely resemble the original definition of orthology and paralogy and are known to be highly accurate. However, the large computational cost associated to these analyses is a limiting factor that often prevents its use at genomic scales. Recently, several projects have addressed the reconstruction of large collections of high-quality phylogenetic trees from which orthology and paralogy relationships can be inferred. This provides us with the opportunity to infer the evolutionary relationships of genes from multiple, independent, phylogenetic trees. Using such strategy, we combine phylogenetic information derived from different databases, to predict orthology and paralogy relationships for 4.1 million proteins in 829 fully sequenced genomes. We show that the number of independent sources from which a prediction is made, as well as the level of consistency across predictions, can be used as reliable confidence scores. A webserver has been developed to easily access these data (http://orthology.phylomedb.org), which provides users with a global repository of phylogeny-based orthology and paralogy predictions.
منابع مشابه
Phylogenetic Reconstruction of Orthology, Paralogy, and Conserved Synteny for Dog and Human
Accurate predictions of orthology and paralogy relationships are necessary to infer human molecular function from experiments in model organisms. Previous genome-scale approaches to predicting these relationships have been limited by their use of protein similarity and their failure to take into account multiple splicing events and gene prediction errors. We have developed PhyOP, a new phylogen...
متن کاملPhylomeDB v3.0: an expanding repository of genome-wide collections of trees, alignments and phylogeny-based orthology and paralogy predictions
The growing availability of complete genomic sequences from diverse species has brought about the need to scale up phylogenomic analyses, including the reconstruction of large collections of phylogenetic trees. Here, we present the third version of PhylomeDB (http://phylomeDB.org), a public database for genome-wide collections of gene phylogenies (phylomes). Currently, PhylomeDB is the largest ...
متن کاملInferring orthology and paralogy.
The distinction between orthologs and paralogs, genes that started diverging by speciation versus duplication, is relevant in a wide range of contexts, most notably phylogenetic tree inference and protein function annotation. In this chapter, we provide an overview of the methods used to infer orthology and paralogy. We survey both graph-based approaches (and their various grouping strategies) ...
متن کاملPhylomeDB v4: zooming into the plurality of evolutionary histories of a genome
Phylogenetic trees representing the evolutionary relationships of homologous genes are the entry point for many evolutionary analyses. For instance, the use of a phylogenetic tree can aid in the inference of orthology and paralogy relationships, and in the detection of relevant evolutionary events such as gene family expansions and contractions, horizontal gene transfer, recombination or incomp...
متن کاملPhyloTreePruner: A Phylogenetic Tree-Based Approach for Selection of Orthologous Sequences for Phylogenomics
Molecular phylogenetics relies on accurate identification of orthologous sequences among the taxa of interest. Most orthology inference programs available for use in phylogenomics rely on small sets of pre-defined orthologs from model organisms or phenetic approaches such as all-versus-all sequence comparisons followed by Markov graph-based clustering. Such approaches have high sensitivity but ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 39 شماره
صفحات -
تاریخ انتشار 2011